Page 1

Displaying 1 – 8 of 8

Showing per page

New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces

Misha Bialy, Andrey Mironov (2012)

Open Mathematics

We consider magnetic geodesic flows on the two-torus. We prove that the question of existence of polynomial in momenta first integrals on one energy level leads to a semi-Hamiltonian system of quasi-linear equations, i.e. in the hyperbolic regions the system has Riemann invariants and can be written in conservation laws form.

Nonlinear Pulse Propagation

Jeffrey Rauch (2001)

Journées équations aux dérivées partielles

This talk gives a brief review of some recent progress in the asymptotic analysis of short pulse solutions of nonlinear hyperbolic partial differential equations. This includes descriptions on the scales of geometric optics and diffractive geometric optics, and also studies of special situations where pulses passing through focal points can be analysed.

Non-unicité du transport par un champ de vecteurs presque B V

Nicolas Depauw (2002/2003)

Séminaire Équations aux dérivées partielles

Nous exposons un exemple de non unicité du problème de Cauchy non caractéristique pour l’équation de transport associé à un champ de vecteurs borné, à divergence nulle et néanmoins à coefficients peu réguliers

Numerical algorithms for perspective shape from shading

Michael Breuss, Emiliano Cristiani, Jean-Denis Durou, Maurizio Falcone, Oliver Vogel (2010)

Kybernetika

The Shape-From-Shading (SFS) problem is a fundamental and classic problem in computer vision. It amounts to compute the 3-D depth of objects in a single given 2-D image. This is done by exploiting information about the illumination and the image brightness. We deal with a recent model for Perspective SFS (PSFS) for Lambertian surfaces. It is defined by a Hamilton–Jacobi equation and complemented by state constraints boundary conditions. In this paper we investigate and compare three state-of-the-art...

Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays

Frédérique Laurent (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this article is the analysis and the development of Eulerian multi-fluid models to describe the evolution of the mass density of evaporating liquid sprays. First, the classical multi-fluid model developed in [Laurent and Massot, Combust. Theor. Model.5 (2001) 537–572] is analyzed in the framework of an unsteady configuration without dynamical nor heating effects, where the evaporation process is isolated, since it is a key issue. The classical multi-fluid method consists then in...

Currently displaying 1 – 8 of 8

Page 1