Gasdynamic regularity: some classifying geometrical remarks.
Classical solutions of initial boundary value problems are approximated by solutions of associated differential difference problems. A method of lines for an unknown function for the original problem and for its partial derivatives with respect to spatial variables is constructed. A complete convergence analysis for the method is given. A stability result is proved by using differential inequalities with nonlinear estimates of the Perron type for the given operators. A discretization...
In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a solution and its stability with certain small initial and boundary data.
In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.
This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math. Pures Appl.74 (1995) 483–548] is used in order to define the weak solutions of the system: an interpretation of the nonconservative products as Borel measures is given, based on the choice of a family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily, it is natural to require this...