On a strong solution in the method of spherical harmonics for a nonstationary transport equation.
In the context of the wave propagation theory in nonlinear hyperbolic systems, we analyse, in the case of a rigid heat conductor, the model proposed by G. Grioli. After introducing the constitutive relations according to the point of view of the extended thermodynamics, we look for the compatibility of the governing equations with a supplementary conservation law. We obtain the functional form of the constitutive quantities and we are able to show that the governing equations may be written in symmetric...
We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.
2000 Mathematics Subject Classification: 34E20, 35L80, 35L15.In this paper we study an ODE in the complex plane. This is a key step in the search of new necessary conditions for the well posedness of the Cauchy Problem for hyperbolic operators with double characteristics.
I will start with a short review of the classical restriction theorem for the sphere and Strichartz estimates for the wave equation. I then plan to give a detailed presentation of their recent generalizations in the form of “Bilinear Estimates”. In addition to the theory, which is now quite well developed, I plan to discuss a more general point of view concerning the theory. By investigating simple examples I will derive necessary conditions for such estimates to be true. I also plan to discuss...
I will start with a short review of the classical restriction theorem for the sphere and Strichartz estimates for the wave equation. I then plan to give a detailed presentation of their recent generalizations in the form of “bilinear estimates”. In addition to the theory, which is now quite well developed, I plan to discuss a more general point of view concerning the theory. By investigating simple examples I will derive necessary conditions for such estimates to be true. I also plan to discuss...
We study the conditions under which the Cauchy problem for a linear hyperbolic system of partial differential equations of the first order in two independent variables has a unique continuous solution (not necessarily Lipschitz continuous). In addition to obvious continuity assumptions on coefficients and initial data, the sufficient conditions are the bounded variation of the left eigenvectors along the characteristic curves.