Displaying 541 – 560 of 1562

Showing per page

L'equazione Δ 2 u + a 10 ( x , y ) u x + a 01 ( x , y ) u y + a 00 ( x , y ) u = F ( x , y ) . Teoremi di completezza

Alberto Cialdea (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In ipotesi molto generali si dimostrano teoremi di completezza nel senso di Picone per l'equazione (1). Come corollario si ottengono teoremi del tipo Runge.

Lieb–Thirring inequalities with improved constants

Jean Dolbeault, Ari Laptev, Michael Loss (2008)

Journal of the European Mathematical Society

Following Eden and Foias we obtain a matrix version of a generalised Sobolev inequality in one dimension. This allows us to improve on the known estimates of best constants in Lieb–Thirring inequalities for the sum of the negative eigenvalues for multidimensional Schrödinger operators.

Lipschitzian norm estimate of one-dimensional Poisson equations and applications

Hacene Djellout, Liming Wu (2011)

Annales de l'I.H.P. Probabilités et statistiques

By direct calculus we identify explicitly the lipschitzian norm of the solution of the Poisson equation in terms of various norms of g, where is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several illustrative...

Local energy decay for several evolution equations on asymptotically euclidean manifolds

Jean-François Bony, Dietrich Häfner (2012)

Annales scientifiques de l'École Normale Supérieure

Let  P be a long range metric perturbation of the Euclidean Laplacian on  d , d 2 . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to  P . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group e i t f ( P ) where f has a suitable development at zero (resp. infinity).

Local Exchange Potentials for Electronic Structure Calculations

Eric Cancès, Gabriel Stoltz, Gustavo E. Scuseria, Viktor N. Staroverov, Ernest R. Davidson (2009)

MathematicS In Action

The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective...

Currently displaying 541 – 560 of 1562