Ecuaciiones disipativas, conjuntos absorbentes y atractores
In this paper, we investigate the problem of fast rotating fluids between two infinite plates with Dirichlet boundary conditions and “turbulent viscosity” for general initial data. We use dispersive effect to prove strong convergence to the solution of the bimensionnal Navier-Stokes equations modified by the Ekman pumping term.
In this paper, we investigate the problem of fast rotating fluids between two infinite plates with Dirichlet boundary conditions and “turbulent viscosity” for general L2 initial data. We use dispersive effect to prove strong convergence to the solution of the bimensionnal Navier-Stokes equations modified by the Ekman pumping term.
We study the tridimensional Navier-Stokes equation when the value of the vertical viscosity is zero, in a critical space (invariant by the scaling). We shall prove local in time existence of the solution, respectively global in time when the initial data is small compared with the horizontal viscosity.
We discuss the validity of the Helmholtz decomposition of the Muckenhoupt -weighted -space for any domain in , , , and Muckenhoupt -weight . Set and . Then the Helmholtz decomposition of and and the variational estimate of and are equivalent. Furthermore, we can replace and by and , respectively. The proof is based on the reflexivity and orthogonality of and and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with...
The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional case....
The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional...
We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space where is an invariant measure
In this paper, a estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on , or on a regular bounded open set of . The proof is based partially on the Strauss inequality [Strauss,Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions...