Local null controllability of a fluid-solid interaction problem in dimension 3
We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...
Local null controllability of a two-dimensional fluid-structure interaction problem
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given , the system can be driven at rest and the structure to its reference configuration at time . To show this result, we first consider a linearized system....
Local null controllability of a two-dimensional fluid-structure interaction problem
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given T > 0, the system can be driven at rest and the structure to its reference configuration at time T. To show this result, we first consider a linearized system....
Local solutions for stochastic Navier Stokes equations
Local Solutions for Stochastic Navier Stokes Equations
In this article we consider local solutions for stochastic Navier Stokes equations, based on the approach of Von Wahl, for the deterministic case. We present several approaches of the concept, depending on the smoothness available. When smoothness is available, we can in someway reduce the stochastic equation to a deterministic one with a random parameter. In the general case, we mimic the concept of local solution for stochastic differential equations.
Local Well-Posedness for Higher Order Nonlinear Dispersive Systems.
Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids
We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data , and for and any . The initial regularity of the micro-rotational velocity is weaker than velocity of the fluid .
Localization of spectrum bottom for the Stokes operator in a random porous medium.
Long time estimate of solutions to 3d Navier-Stokes equations coupled with heat convection
We examine the Navier-Stokes equations with homogeneous slip boundary conditions coupled with the heat equation with homogeneous Neumann conditions in a bounded domain in ℝ³. The domain is a cylinder along the x₃ axis. The aim of this paper is to show long time estimates without assuming smallness of the initial velocity, the initial temperature and the external force. To prove the estimate we need however smallness of the L₂ norms of the x₃-derivatives of these three quantities.
Long time existence of regular solutions to 3d Navier-Stokes equations coupled with heat convection
We prove long time existence of regular solutions to the Navier-Stokes equations coupled with the heat equation. We consider the system in a non-axially symmetric cylinder, with the slip boundary conditions for the Navier-Stokes equations, and the Neumann condition for the heat equation. The long time existence is possible because the derivatives, with respect to the variable along the axis of the cylinder, of the initial velocity, initial temperature and external force are assumed to be sufficiently...
Long time existence of regular solutions to Navier-Stokes equations in cylindrical domains under boundary slip conditions
Long time existence of solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions is proved. Moreover, the existence of solutions with no restrictions on the magnitude of the initial velocity and the external force is shown. However, we have to assume that the quantity is sufficiently small, where x₃ is the coordinate along the axis parallel to the cylinder. The time of existence is inversely proportional to I. Existence of solutions is proved by the Leray-Schauder...
Long time existence of solutions to 2d Navier-Stokes equations with heat convection
Global existence of regular solutions to the Navier-Stokes equations for (v,p) coupled with the heat convection equation for θ is proved in the two-dimensional case in a bounded domain. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence is proved by the Leray-Schauder fixed point theorem. We prove the existence of solutions such that , , s>2.
Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as . This result was obtained in...
Long-time behavior for 2D non-autonomous g-Navier-Stokes equations
We study the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent...
Low Mach number limit for viscous compressible flows
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...
Low Mach number limit for viscous compressible flows
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes...
Lq - Lr estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in Lq spaces.