Displaying 481 – 500 of 787

Showing per page

On the stationary Boltzmann equation

Leif Arkeryd (2001/2002)

Séminaire Équations aux dérivées partielles

For stationary kinetic equations, entropy dissipation can sometimes be used in existence proofs similarly to entropy in the time dependent situation. Recent results in this spirit obtained in collaboration with A. Nouri, are here presented for the nonlinear stationary Boltzmann equation in bounded domains of I R n with given indata and diffuse reflection on the boundary.

On the variational inequality approach to compressible flows via hodograph method.

Lisa Santos (1993)

Revista Matemática de la Universidad Complutense de Madrid

We study the flow of a compressible, stationary and irrotational fluid with wake, in a channel, around a convex symmetric profile, with assigned velocity q-infinity at infinity and q-s < q-infinity at the wake. In particular, we study the regularity of the free boundary (for a problem which has non-constant coefficients), in the hodograph plane.

Optimal control of fluid flow in soil 1. Deterministic case.

Youcef Kelanemer (1998)

Revista Matemática Complutense

We study the numerical aspect of the optimal control of problems governed by a linear elliptic partial differential equation (PDE). We consider here the gas flow in porous media. The observed variable is the flow field we want to maximize in a given part of the domain or its boundary. The control variable is the pressure at one part of the boundary or the discharges of some wells located in the interior of the domain. The objective functional is a balance between the norm of the flux in the observation...

Optimal control of the Primitive Equations of the ocean with Lagrangian observations

Maëlle Nodet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for the three-dimensional non-linear Primitive Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an optimal control problem which consists in minimizing a cost function representing the least square error between Lagrangian observations and their model counterpart, plus a regularization term. This paper proves...

Currently displaying 481 – 500 of 787