Existence de solutions avec petite donnée initiale dans pour une équation de Dirac non linéaire
We give an explicit expression of a two-parameter family of Flensted-Jensen’s functions on a concrete realization of the universal covering group of . We prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to , and corresponding to the eigenvalue .
Global maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation.
Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in under some conditions on the nonlinearity (the coupling term), by using the conservation law for and controlling the growth of via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in Miao, Xu (2007)...
We establish global existence and scattering for radial solutions to the energy-critical focusing Hartree equation with energy and Ḣ¹ norm less than those of the ground state in , d ≥ 5.
We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.
We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....