Displaying 261 – 280 of 372

Showing per page

Proof of the Treves theorem on the KdV hierarchy

Leonid Dickey (2005)

Annales de l’institut Fourier

A new, shorter, proof of the Treves theorem on an algebraic criterion for the first integrals of the KdV hierarchy is given, along with an addition to the theorem.

Reduced order controllers for Burgers' equation with a nonlinear observer

Jeanne Atwell, Jeffrey Borggaard, Belinda King (2001)

International Journal of Applied Mathematics and Computer Science

A method for reducing controllers for systems described by partial differential equations (PDEs) is applied to Burgers' equation with periodic boundary conditions. This approach differs from the typical approach of reducing the model and then designing the controller, and has developed over the past several years into its current form. In earlier work it was shown that functional gains for the feedback control law served well as a dataset for reduced order basis generation via the proper orthogonal...

Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems

Walid Ben Youssef, Thierry Colin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the long wave approximation for quasilinear symmetric hyperbolic systems. Using the technics developed by Joly-Métivier-Rauch for nonlinear geometrical optics, we prove that under suitable assumptions the long wave limit is described by KdV-type systems. The error estimate if the system is coupled appears to be better. We apply formally our technics to Euler equations with free surface and Euler-Poisson systems. This leads to new systems of KdV-type.

Currently displaying 261 – 280 of 372