Displaying 221 – 240 of 281

Showing per page

Stabilization of walls for nano-wires of finite length

Gilles Carbou, Stéphane Labbé (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

Static electromagnetic fields in monotone media

Rainer Picard (1992)

Banach Center Publications

The paper considers the static Maxwell system for a Lipschitz domain with perfectly conducting boundary. Electric and magnetic permeability ε and μ are allowed to be monotone and Lipschitz continuous functions of the electromagnetic field. The existence theory is developed in the framework of the theory of monotone operators.

Stationary solutions of two-dimensional heterogeneous energy models with multiple species

Annegret Glitzky, Rolf Hünlich (2004)

Banach Center Publications

We investigate stationary energy models in heterostructures consisting of continuity equations for all involved species, of a Poisson equation for the electrostatic potential and of an energy balance equation. The resulting strongly coupled system of elliptic differential equations has to be supplemented by mixed boundary conditions. If the boundary data are compatible with thermodynamic equilibrium then there exists a unique steady state. We prove that in a suitable neighbourhood of such a thermodynamic...

Study of Anisotropic MHD system in Anisotropic Sobolev spaces

Jamel Ben Ameur, Ridha Selmi (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Three-dimensional anisotropic magneto-hydrodynamical system is investigated in the whole space 3 . Existence and uniqueness results are proved in the anisotropic Sobolev space H 0 , s for s > 1 / 2 . Asymptotic behavior of the solution when the Rossby number goes to zero is studied. The proofs, where the incompressibility condition is crucial, use the energy method, an appropriate dyadic decomposition of the frequency space, product laws in anisotropic Sobolev spaces and Strichartz-type estimates.

T-coercivity for scalar interface problems between dielectrics and metamaterials

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive...

T-coercivity for scalar interface problems between dielectrics and metamaterials

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive...

The Calderón problem with partial data

Johannes Sjöstrand (2004)

Journées Équations aux dérivées partielles

We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension n 3 , the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem.

The Cauchy problem for the magneto-hydrodynamic system

Marco Cannone, Changxing Miao, Nicolas Prioux, Baoquan Yuan (2006)

Banach Center Publications

We study the uniqueness and regularity of Leray-Hopf's weak solutions for the MHD equations with dissipation and resistance in different frameworks. Using different kinds of space-time estimates in conjunction with the Littlewood-Paley-Bony decomposition, we present some general criteria of uniqueness and regularity of weak solutions to the MHD system, and prove the uniqueness and regularity criterion in the framework of mixed space-time Besov spaces by applying Tao's trichotomy method.

The change in electric potential due to lightning

William W. Hager, Beyza Caliskan Aslan (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The change in the electric potential due to lightning is evaluated. The potential along the lightning channel is a constant which is the projection of the pre-flash potential along a piecewise harmonic eigenfunction which is constant along the lightning channel. The change in the potential outside the lightning channel is a harmonic function whose boundary conditions are expressed in terms of the pre-flash potential and the post-flash potential along the lightning channel. The expression for the...

The quasineutral limit problem in semiconductors sciences

Ling Hsiao (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the...

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for...

Currently displaying 221 – 240 of 281