Displaying 81 – 100 of 280

Showing per page

Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation

Xavier Claeys, Ralf Hiptmair (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic...

Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation

Xavier Claeys, Ralf Hiptmair (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic...

Existence and asymptotics of solutions of the Debye-Nernst-Planck system in ℝ²

Agnieszka Herczak, Michał Olech (2009)

Banach Center Publications

We investigate a system describing electrically charged particles in the whole space ℝ². Our main goal is to describe large time behavior of solutions which start their evolution from initial data of small size. This is achieved using radially symmetric self-similar solutions.

Existence and continuous dependence results in the dynamical theory of piezoelectricity

Michele Ciarletta (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The paper is concerned with the dynamical theory of linear piezoelectricity. First, an existence theorem is derived. Then, the continuous dependence of the solutions upon the initial data and body forces is investigated.

Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects

Pierre-Étienne Druet (2009)

Czechoslovak Mathematical Journal

We consider the problem of influencing the motion of an electrically conducting fluid with an applied steady magnetic field. Since the flow is originating from buoyancy, heat transfer has to be included in the model. The stationary system of magnetohydrodynamics is considered, and an approximation of Boussinesq type is used to describe the buoyancy. The heat sources given by the dissipation of current and the viscous friction are not neglected in the fluid. The vessel containing the fluid is embedded...

Exterior problem of the Darwin model and its numerical computation

Lung-An Ying, Fengyan Li (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we study the exterior boundary value problems of the Darwin model to the Maxwell’s equations. The variational formulation is established and the existence and uniqueness is proved. We use the infinite element method to solve the problem, only a small amount of computational work is needed. Numerical examples are given as well as a proof of convergence.

Exterior problem of the Darwin model and its numerical computation

Lung-an Ying, Fengyan Li (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the exterior boundary value problems of the Darwin model to the Maxwell's equations. The variational formulation is established and the existence and uniqueness is proved. We use the infinite element method to solve the problem, only a small amount of computational work is needed. Numerical examples are given as well as a proof of convergence.

Currently displaying 81 – 100 of 280