Résurgence d'un thème de Huygens-Fresnel
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...
The author solves a mixed boundary value problem for linear partial differential equations of the elliptic type in a multiply connected domain. Dirichlet conditions are given on the components of the boundary of the domain up to some additive constants which are not known a priori. These constants are to be determined, together with the solution of the boundary value problem, to fulfil some additional conditions. The results are immediately applicable in hydrodynamics to the solution of problems...
A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain . On the boundary , the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.