Formule de Trotter pour l’opérateur
This is the first of three papers on the geometry of KDV. It presents what purports to be a foliation of an extensive function space into which all known invariant manifolds of KDV fit naturally as special leaves. The two main themes are addition (each leaf has its private one) and unimodal spectral classes (each leaf has a spectral interpretation).
We consider a biharmonic problem with Navier type boundary conditions , on a family of truncated sectors in of radius , and opening angle , when is close to . The family of right-hand sides is assumed to depend smoothly on in . The main result is that converges to when with respect to the -norm. We can also show that the -topology is optimal for such a convergence result.
The question how many real analytic affine connections exist locally on a smooth manifold of dimension is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of variables.
The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold of dimension is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of variables.
We study the evolution law of the canonical energy of an electromagnetic material, immersed in an environment that is thermally and electromagnetically passive, at constant temperature. We use as constitutive equation for the heat flux a Maxwell-Cattaneo like equation.