Oscillateur quartique et méthodes semi-classiques
It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system for which the...
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...
A mathematical model for a problem of blood perfusion in a living tissue through a system of parallel capillaries is studied. Oxygen is assumed to be transported in two forms: freely diffusing and bounded (to erytrocytes in blood, to myoglobin in tissue). Existence of a weak solution is proved and a homogensation procedure is carried out in the case of randomly distribuited capillaries.