Covariant functional quantizations of superstrings
Let u be a weak solution of the Navier-Stokes equations in a smooth bounded domain Ω ⊆ ℝ³ and a time interval [0,T), 0 < T ≤ ∞, with initial value u₀, external force f = div F, and viscosity ν > 0. As is well known, global regularity of u for general u₀ and f is an unsolved problem unless we pose additional assumptions on u₀ or on the solution u itself such as Serrin’s condition where 2/s + 3/q = 1. In the present paper we prove several local and global regularity properties by using assumptions...
Nonlinear Schrödinger equations (NLS) with strongly singular potential on a bounded domain are considered. If and , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here is excluded because is not equal to , where is nonnegative and selfadjoint in . On the other hand, if is a smooth and bounded domain with , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000)....