Displaying 161 – 180 of 212

Showing per page

Existence of permanent and breaking waves for a shallow water equation : a geometric approach

Adrian Constantin (2000)

Annales de l'institut Fourier

The existence of global solutions and the phenomenon of blow-up of a solution in finite time for a recently derived shallow water equation are studied. We prove that the only way a classical solution could blow-up is as a breaking wave for which we determine the exact blow-up rate and, in some cases, the blow-up set. Using the correspondence between the shallow water equation and the geodesic flow on the manifold of diffeomorphisms of the line endowed with a weak Riemannian structure, we give sufficient...

Existence of Solutions for the Keller-Segel Model of Chemotaxis with Measures as Initial Data

Piotr Biler, Jacek Zienkiewicz (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

A simple proof of the existence of solutions for the two-dimensional Keller-Segel model with measures with all the atoms less than 8π as the initial data is given. This result was obtained by Senba and Suzuki (2002) and Bedrossian and Masmoudi (2014) using different arguments. Moreover, we show a uniform bound for the existence time of solutions as well as an optimal hypercontractivity estimate.

Existence of solutions to nonlinear advection-diffusion equation applied to Burgers' equation using Sinc methods

Kamel Al-Khaled (2014)

Applications of Mathematics

This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...

Existence of strong solutions for nonisothermal Korteweg system

Boris Haspot (2009)

Annales mathématiques Blaise Pascal

This work is devoted to the study of the initial boundary value problem for a general non isothermal model of capillary fluids derived by J. E Dunn and J. Serrin (1985) in [9, 16], which can be used as a phase transition model.We distinguish two cases, when the physical coefficients depend only on the density, and the general case. In the first case we can work in critical scaling spaces, and we prove global existence of solution and uniqueness for data close to a stable equilibrium. For general...

Currently displaying 161 – 180 of 212