Displaying 101 – 120 of 152

Showing per page

On the finite blocking property

Thierry Monteil (2005)

Annales de l’institut Fourier

A planar polygonal billiard 𝒫 is said to have the finite blocking property if for every pair ( O , A ) of points in 𝒫 there exists a finite number of “blocking” points B 1 , , B n such that every billiard trajectory from O to A meets one of the B i ’s. Generalizing our construction of a counter-example to a theorem of Hiemer and Snurnikov, we show that the only regular polygons that have the finite blocking property are the square, the equilateral triangle and the hexagon. Then we extend this result to translation surfaces....

On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus

Erwan Lanneau, Jean-Luc Thiffeault (2011)

Annales de l’institut Fourier

We find the minimum dilatation of pseudo-Anosov homeomorphisms that stabilize an orientable foliation on surfaces of genus three, four, or five, and provide a lower bound for genus six to eight. Our technique also simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeomorphisms on a genus two surface. For genus g = 2 to 5 , the minimum dilatation is the smallest Salem number for polynomials of degree 2 g .

On the spectral theory and dynamics of asymptotically hyperbolic manifolds

Julie Rowlett (2010)

Annales de l’institut Fourier

We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures.

Quasilinear waves and trapping: Kerr-de Sitter space

Peter Hintz, András Vasy (2014)

Journées Équations aux dérivées partielles

In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally...

Currently displaying 101 – 120 of 152