Displaying 161 – 180 of 352

Showing per page

Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point

J. C. Tzou, A. Bayliss, B.J. Matkowsky, V.A. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of ...

Intertwined mappings

Jean Ecalle, Bruno Vallet (2004)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Invariant curves from symmetry

Michal Fečkan (1993)

Mathematica Bohemica

We show that certain symmetries of maps imply the existence of their invariant curves.

Levi-flat invariant sets of holomorphic symplectic mappings

Xianghong Gong (2001)

Annales de l’institut Fourier

We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets...

Limit cycles for vector fields with homogeneous components

A. Cima, A. Gasukk, F. Mañosas (1997)

Applicationes Mathematicae

We study planar polynomial differential equations with homogeneous components. This kind of equations present a simple and well known dynamics when the degrees (n and m) of both components coincide. Here we consider the case n m and we show that the dynamics is more complicated. In fact, we prove that such systems can exhibit periodic orbits only when nm is odd. Furthermore, for nm odd we give examples of such differential equations with at least (n+m)/2 limit cycles.

Currently displaying 161 – 180 of 352