Espaces de Krein et index des systèmes hamiltoniens
In this paper we examine nonlinear periodic systems driven by the vectorial -Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is based on the nonsmooth critical point theory and uses the subdifferential theory for locally Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem. For the semilinear problem (i.e. ) using a nonsmooth multidimensional version of the Ambrosetti-Rabinowitz condition, we prove an existence theorem...
The existence of solutions for boundary value problems for a nonlinear discrete system involving the -Laplacian is investigated. The approach is based on critical point theory.
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.