Espaces de Krein et index des systèmes hamiltoniens
V. Brousseau (1990)
Annales de l'I.H.P. Analyse non linéaire
H. Hofer (1993)
Commentarii mathematici Helvetici
P. Foulon (1992)
Annales de l'I.H.P. Physique théorique
Michèle Audin (2003)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Michael R. Herman (1987/1988)
Séminaire Équations aux dérivées partielles (Polytechnique)
Mehdi, M. (1999)
Acta Mathematica Universitatis Comenianae. New Series
Jung, Tacksun, Choi, Q-Heung (2008)
Boundary Value Problems [electronic only]
Ding, Jian, Xu, Junxiang, Zhang, Fubao (2009)
Abstract and Applied Analysis
Eric Séré (1992)
Mathematische Zeitschrift
Han, Zhiqing (2010)
Boundary Value Problems [electronic only]
Evgenia H. Papageorgiou, Nikolaos S. Papageorgiou (2004)
Czechoslovak Mathematical Journal
In this paper we examine nonlinear periodic systems driven by the vectorial -Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is based on the nonsmooth critical point theory and uses the subdifferential theory for locally Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem. For the semilinear problem (i.e. ) using a nonsmooth multidimensional version of the Ambrosetti-Rabinowitz condition, we prove an existence theorem...
Zhang, Guang, Bai, Liang (2009)
Discrete Dynamics in Nature and Society
Xingyong Zhang, Xianhua Tang (2012)
Applications of Mathematics
The existence of solutions for boundary value problems for a nonlinear discrete system involving the -Laplacian is investigated. The approach is based on critical point theory.
Spradlin, Gregory S. (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Marc De Wilde, P. B. A. Lecomte (1985)
Annales de l'institut Fourier
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
M.A. Olshanetsky, A.M. Perelomov (1979)
Inventiones mathematicae
John Erik Fornaess, Sandrine Grellier (1996)
Mathematische Zeitschrift
Alan Weinstein, Ping Xu (1991)
Journal für die reine und angewandte Mathematik
Albert Fathi, John Mather (2000)
Bulletin de la Société Mathématique de France
Valdinoci, Enrico (2000)
Mathematical Physics Electronic Journal [electronic only]