Displaying 541 – 560 of 912

Showing per page

Optimalité systolique infinitésimale de l’oscillateur harmonique

J.C. Álvarez Paiva, Florent Balacheff (2008/2009)

Séminaire de théorie spectrale et géométrie

Nous étudions les aspects infinitésimaux du problème suivant. Soit H un hamiltonien de 2 n dont la surface d’énergie { H = 1 } borde un domaine compact et étoilé de volume identique à celui de la boule unité de 2 n . La surface d’énergie { H = 1 } contient-elle une orbite périodique du système hamiltonien q ˙ = H p p ˙ = - H q dont l’action soit au plus π  ?

Orbits of families of vector fields on subcartesian spaces

Jedrzej Śniatycki (2003)

Annales de l'Institut Fourier

Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified...

Overview of the differential Galois integrability conditions for non-homogeneous potentials

Andrzej J. Maciejewski, Maria Przybylska (2011)

Banach Center Publications

We report our recent results concerning integrability of Hamiltonian systems governed by Hamilton’s function of the form H = 1 / 2 i = 1 n p ² i + V ( q ) , where the potential V is a finite sum of homogeneous components. In this paper we show how to find, in the differential Galois framework, computable necessary conditions for the integrability of such systems. Our main result concerns potentials of the form V = V k + V K , where V k and V K are homogeneous functions of integer degrees k and K > k, respectively. We present examples of integrable...

Periodic orbits close to elliptic tori and applications to the three-body problem

Massimiliano Berti, Luca Biasco, Enrico Valdinoci (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove, under suitable non-resonance and non-degeneracy “twist” conditions, a Birkhoff-Lewis type result showing the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori (of hamiltonian systems). We prove the applicability of this result to the spatial planetary three-body problem in the small eccentricity-inclination regime. Furthermore, we find other periodic orbits under some restrictions on the period and the masses...

Periodic solutions for second order Hamiltonian systems

Qiongfen Zhang, X. H. Tang (2012)

Applications of Mathematics

By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.

Periodic solutions for second-order Hamiltonian systems with a p -Laplacian

Xianhua Tang, Xingyong Zhang (2010)

Annales UMCS, Mathematica

In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.

Periodic solutions for some nonautonomous p ( t ) -Laplacian Hamiltonian systems

Liang Zhang, X. H. Tang (2013)

Applications of Mathematics

In this paper, we deal with the existence of periodic solutions of the p ( t ) -Laplacian Hamiltonian system d d t ( | u ˙ ( t ) | p ( t ) - 2 u ˙ ( t ) ) = F ( t , u ( t ) ) a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 . Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.

Currently displaying 541 – 560 of 912