Displaying 61 – 80 of 165

Showing per page

Exponential decay to partially thermoelastic materials

Jaime E. Muñoz Rivera, Vanilde Bisognin, Eleni Bisognin (2002)

Bollettino dell'Unione Matematica Italiana

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov's second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Fault tolerant control for uncertain time-delay systems based on sliding mode control

Jun Sheng Wu, Zhengxin Weng, Zuo Hua Tian, Song Jiao Shi (2008)

Kybernetika

Fault tolerant control for uncertain systems with time varying state-delay is studied in this paper. Based on sliding mode controller design, a fault tolerant control method is proposed. By means of the feasibility of some linear matrix inequalities (LMIs), delay dependent sufficient condition is derived for the existence of a linear sliding surface which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. A reaching motion controller, which can...

Finite-dimensional Pullback Attractors for Non-autonomous Newton-Boussinesq Equations in Some Two-dimensional Unbounded Domains

Cung The Anh, Dang Thanh Son (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We study the existence and long-time behavior of weak solutions to Newton-Boussinesq equations in two-dimensional domains satisfying the Poincaré inequality. We prove the existence of a unique minimal finite-dimensional pullback D σ -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms.

Finite-dimensionality of 2-D micropolar fluid flow with periodic boundary conditions

Piotr Szopa (2007)

Applicationes Mathematicae

This paper is devoted to proving the finite-dimensionality of a two-dimensional micropolar fluid flow with periodic boundary conditions. We define the notions of determining modes and nodes and estimate their number. We check how the distribution of the forces and moments through modes influences the estimate of the number of determining modes. We also estimate the dimension of the global attractor. Finally, we compare our results with analogous results for the Navier-Stokes equation.

Galerkin averaging method and Poincaré normal form for some quasilinear PDEs

Dario Bambusi (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We use the Galerkin averaging method to construct a coordinate transformation putting a nonlinear PDE in Poincaré normal form up to finite order. We also give a rigorous estimate of the remainder showing that it is small as a differential operator of very high order. The abstract theorem is then applied to a quasilinear wave equation, to the water wave problem and to a nonlinear heat equation. The normal form is then used to construct approximate solutions whose difference from true solutions is...

Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation

Nikolay Tzvetkov, Nicola Visciglia (2013)

Annales scientifiques de l'École Normale Supérieure

Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.

Global attractors for problems with monotone operators

Alexandre N. Carvalho, Jan W. Cholewa, Tomasz Dlotko (1999)

Bollettino dell'Unione Matematica Italiana

L'esistenza di attrattori globali per equazioni paraboliche semilineari è stata estensivamente studiata da molti autori mentre il caso quasilineare è stato meno considerato e ancora esistono molti problemi aperti. L'obiettivo di questo lavoro è di studiare, da un punto di vista astratto, l'esistenza di attrattori globali per equazioni paraboliche quasilineari con parte principale monotona. I risultati ottenuti vengono applicati a problemi parabolici degeneri del secondo ordine e di ordine superiore....

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s < 1 , under some bilinear Strichartz assumption. We will find some s ˜ < 1 , such that the solution is global for s > s ˜ .

Global stability of travelling fronts for a damped wave equation with bistable nonlinearity

Thierry Gallay, Romain Joly (2009)

Annales scientifiques de l'École Normale Supérieure

We consider the damped wave equation α u t t + u t = u x x - V ' ( u ) on the whole real line, where V is a bistable potential. This equation has travelling front solutions of the form u ( x , t ) = h ( x - s t ) which describe a moving interface between two different steady states of the system, one of which being the global minimum of V . We show that, if the initial data are sufficiently close to the profile of a front for large | x | , the solution of the damped wave equation converges uniformly on to a travelling front as t + . The proof of this global stability...

Currently displaying 61 – 80 of 165