The restriction algebra A(...) for curves ...R...
We study the local properties of the time-dependent probability density function for the free quantum particle in a box, i.e. the squared magnitude of the solution of the Cauchy initial value problem for the Schrödinger equation with zero potential, and the periodic initial data. √δ-families of initial functions are considered whose squared magnitudes approximate the periodic Dirac δ-function. The focus is on the set of rectilinear domains where the density has a special character, in particular,...
The class of -sets forms an important subclass of the class of sets of uniqueness for trigonometric series. We investigate the size of this class which is reflected by the family of measures (called polar) annihilating all sets from the class. The main aim of this paper is to answer in the negative a question stated by Lyons, whether the polars of the classes of -sets are the same for all N ∈ ℕ. To prove our result we also present a new description of -sets.
The Stein-Weiss theorem that the distribution function of the Hilbert transform of the characteristic function of E depends only on the measure of E is generalized for the ergodic Hilbert transform in the case of a one-parameter flow of measure-preserving transformations on a σ-finite measure space.
In this article complete characterizations of the quasiasymptotic behavior of Schwartz distributions are presented by means of structural theorems. The cases at infinity and the origin are both analyzed. Special attention is paid to quasiasymptotics of degree -1. It is shown how the structural theorem can be used to study Cesàro and Abel summability of trigonometric series and integrals. Further properties of quasiasymptotics at infinity are discussed. A condition for test functions in bigger spaces...
We show a general method of construction of non--porous sets in complete metric spaces. This method enables us to answer several open questions. We prove that each non--porous Suslin subset of a topologically complete metric space contains a non--porous closed subset. We show also a sufficient condition, which gives that a certain system of compact sets contains a non--porous element. Namely, if we denote the space of all compact subsets of a compact metric space with the Vietoris topology...
In this paper we consider a class of three-term recurrence relations, whose associated tridiagonal matrices are subnormal operators. In this cases, there are measures associated to the polynomials given by such relations. We study the support of these measures.
In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.
In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.
On estime la croissance à l’infini, en norme , des sommes trigonométriques dont les fréquences (fixes) sont proches d’entiers (la norme est calculée sur un intervalle de longueur fixe dont le centre tend vers l’infini).
We consider sets in the real line that have Littlewood-Paley properties LP(p) or LP and study the following question: How thick can these sets be?