On the spectrum of the Laplacian on the affine group of the real line
On considère un immeuble de type ou , différents sous-ensembles de l’ensemble des sommets de et différents groupes d’automorphismes de , très fortement transitifs sur . On montre que l’algèbre des opérateurs -invariants agissant sur l’espace des fonctions sur est souvent non commutative (contrairement aux résultats classiques). Dans certains cas on décrit sa structure et on détermine ses fonctions radiales propres. On en déduit que la conjecture d’Helgason n’est pas toujours vérifiée...
Let ℒ be the sublaplacian on the Heisenberg group Hⁿ. A recent result of Müller and Stein shows that the operator is bounded on for all p satisfying |1/p - 1/2| < 1/(2n). In this paper we show that the same operator is bounded on in the bigger range |1/p - 1/2| < 1/(2n-1) if we consider only functions which are band limited in the central variable.
Let 𝓓 be a symmetric type two Siegel domain over the cone of positive definite Hermitian matrices and let N(Φ)S be a solvable Lie group acting simply transitively on 𝓓. We characterize polynomially growing pluriharmonic functions on 𝓓 by means of three N(Φ)S-invariant second order elliptic degenerate operators.
We prove that any simply connected nilpotent Lie group satisfies the qualitative uncertainty principle.
The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.
We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...
Let be the Heisenberg group of dimension . Let be the partial sub-Laplacians on and the central element of the Lie algebra of . We prove that the kernel of the operator is in the Schwartz space if . We prove also that the kernel of the operator is in if and that the kernel of the operator is in if . Here is the Kohn-Laplacian on .