On the Wiener-Eberlein theorem
We prove that any infinite-dimensional non-archimedean Fréchet space is homeomorphic to where is a discrete space with . It follows that infinite-dimensional non-archimedean Fréchet spaces and are homeomorphic if and only if . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field is homeomorphic to the non-archimedean Fréchet space .
A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, , such that whenever β ≤ α for all . The class of all metrizable topological groups is a proper subclass of the class of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group is metrizable, and hence G is strictly angelic. We deduce from this result...
In this paper we deal with the vector lattice of all elementary Carathéodory functions corresponding to a generalized Boolean algebra .
Let be the Banach space of real measures on a -ring , let be its dual, let be a quasi-complete locally convex space, let be its dual, and let be an -valued measure on . If is shown that for any there exists an element of such that for any and that the mapis order continuous. It follows that the closed convex hull of is weakly compact.
Let X be a real or complex vector space. We show that the maximal p-convex topology makes X a complete Hausdorff topological vector space. If X has an uncountable dimension, then different p give different topologies. However, if the dimension of X is at most countable, then all these topologies coincide. This leads to an example of a complete locally pseudoconvex space X that is not locally convex, but all of whose separable subspaces are locally convex. We apply these results to topological algebras,...
Let be a real linear space. A vectorial inner product is a mapping from into a real ordered vector space with the properties of a usual inner product. Here we consider to be a -regular Yosida space, that is a Dedekind complete Yosida space such that , where is the set of all hypermaximal bands in . In Theorem 2.1.1 we assert that any -regular Yosida space is Riesz isomorphic to the space of all bounded real-valued mappings on a certain set . Next we prove Bessel Inequality and Parseval...
Every weakly sequentially compact convex set in a locally convex space has the weak drop property and every weakly compact convex set has the quasi-weak drop property. An example shows that the quasi-weak drop property is strictly weaker than the weak drop property for closed bounded convex sets in locally convex spaces (even when the spaces are quasi-complete). For closed bounded convex subsets of quasi-complete locally convex spaces, the quasi-weak drop property is equivalent to weak compactness....
Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.