Displaying 621 – 640 of 2679

Showing per page

Distances to spaces of affine Baire-one functions

Jiří Spurný (2010)

Studia Mathematica

Let E be a Banach space and let ( B E * ) and ( B E * ) denote the space of all Baire-one and affine Baire-one functions on the dual unit ball B E * , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between d i s t ( f , ( B E * ) ) and d i s t ( f , ( B E * ) ) , where f is an affine function on B E * . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.

Dominated operators on C[0, 1] and the (CRP).

G. Emmanuele (1990)

Collectanea Mathematica

We show that a B-space E has the (CRP) if and only if any dominated operator T from C[0, 1] into E is compact. Hence we apply this result to prove that c0 embeds isomorphically into the B-space of all compact operators from C[0, 1] into an arbitrary B-space E without the (CRP).

Double convergence and products of Fréchet spaces

Josef Novák (1998)

Czechoslovak Mathematical Journal

The paper is devoted to convergence of double sequences and its application to products. In a convergence space we recognize three types of double convergences and points, respectively. We give examples and describe their structure and properties. We investigate the relationship between the topological and convergence closure product of two Fréchet spaces. In particular, we give a necessary and sufficient condition for the topological product of two compact Hausdorff Fréchet spaces to be a Fréchet...

Double Sequence Spaces Definedby a Sequence of Modulus Functions over n -normed Spaces

Sunil K. Sharma, Ayhan Esi (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In the present paper we introduce some double sequence spaces defined by a sequence of modulus function F = ( f k , l ) over n -normed spaces. We also make an effort to study some topological properties and inclusion relations between these spaces.

Double sequence spaces over n -normed spaces

Kuldip Raj, Sunil K. Sharma (2014)

Archivum Mathematicum

In this paper, we define some classes of double sequences over n -normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.

Drop property on locally convex spaces

Ignacio Monterde, Vicente Montesinos (2008)

Studia Mathematica

A single technique provides short proofs of some results about drop properties on locally convex spaces. It is shown that the quasi drop property is equivalent to a drop property for countably closed sets. As a byproduct, we prove that the drop and quasi drop properties are separably determined.

Dual Spaces and Hahn-Banach Theorem

Keiko Narita, Noboru Endou, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we deal with dual spaces and the Hahn-Banach Theorem. At the first, we defined dual spaces of real linear spaces and proved related basic properties. Next, we defined dual spaces of real normed spaces. We formed the definitions based on dual spaces of real linear spaces. In addition, we proved properties of the norm about elements of dual spaces. For the proof we referred to descriptions in the article [21]. Finally, applying theorems of the second section, we proved the Hahn-Banach...

Currently displaying 621 – 640 of 2679