Displaying 1021 – 1040 of 2679

Showing per page

La théorie des cônes biréticulés

Alain Goullet de Rugy (1971)

Annales de l'institut Fourier

Soient 𝒮 la classe des cônes convexes saillants faiblement complets et 𝒮 loc la sous-classe de 𝒮 formée des cônes localement compacts de 𝒮 . Dans les dix dernières années, Alfsen, Bauer, Effros, Rogalski et Stormer ont donné de nombreuses propriétés équivalentes entre elles et qui caractérisent dans 𝒮 loc les cônes de Radon 𝔐 + ( T ) des mesures de Radon positives sur un espace compact T . On montre ici que ces propriétés, convenablement interprétées, restent équivalentes dans la sous-classe 𝒮 p b c des cônes presque bien...

Lacunary weak statistical convergence

Fatih Nuray (2011)

Mathematica Bohemica

The aim of this work is to generalize lacunary statistical convergence to weak lacunary statistical convergence and -convergence to weak -convergence. We start by defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We find a connection between weak lacunary statistical convergence and weak statistical convergence.

Les espaces de Berkovich sont angéliques

Jérôme Poineau (2013)

Bulletin de la Société Mathématique de France

Bien que les espaces de Berkovich définis sur un corps trop gros ne soient, en général, pas métrisables, nous montrons que leur topologie reste en grande partie gouvernée par les suites : tout point adhérent à une partie est limite d’une suite de points de cette partie et les parties compactes sont séquentiellement compactes. Notre preuve utilise de façon essentielle l’extension des scalaires et nous en étudions certaines propriétés. Nous montrons qu’un point d’un disque peut être défini sur un...

Les topologies sygma-Lebesgue sur C(X).

Belmesnaoui Aqzzouz, Redouane Nouira (2004)

Extracta Mathematicae

We prove that if X is a compact topological space which contains a nontrivial metrizable connected closed subset, then the vector lattice C(X) does not carry any sygma-Lebesgue topology.

Currently displaying 1021 – 1040 of 2679