La estructura de la convergencia continua y su importancia en el cálculo diferencial en espacios no-normables.
Soient la classe des cônes convexes saillants faiblement complets et la sous-classe de formée des cônes localement compacts de . Dans les dix dernières années, Alfsen, Bauer, Effros, Rogalski et Stormer ont donné de nombreuses propriétés équivalentes entre elles et qui caractérisent dans les cônes de Radon des mesures de Radon positives sur un espace compact . On montre ici que ces propriétés, convenablement interprétées, restent équivalentes dans la sous-classe des cônes presque bien...
The aim of this work is to generalize lacunary statistical convergence to weak lacunary statistical convergence and -convergence to weak -convergence. We start by defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We find a connection between weak lacunary statistical convergence and weak statistical convergence.
We study the structure of spaces of germs of holomorphic functions on compact sets in Fréchet spaces for (LB∞) as well as for (Ω,Ω).
Bien que les espaces de Berkovich définis sur un corps trop gros ne soient, en général, pas métrisables, nous montrons que leur topologie reste en grande partie gouvernée par les suites : tout point adhérent à une partie est limite d’une suite de points de cette partie et les parties compactes sont séquentiellement compactes. Notre preuve utilise de façon essentielle l’extension des scalaires et nous en étudions certaines propriétés. Nous montrons qu’un point d’un disque peut être défini sur un...
We prove that if X is a compact topological space which contains a nontrivial metrizable connected closed subset, then the vector lattice C(X) does not carry any sygma-Lebesgue topology.