Compositions of operator ideals and their regular hulls
New compound geometric invariants are constructed in order to characterize complemented embeddings of Cartesian products of power series spaces. Bessaga's conjecture is proved for the same class of spaces.
The notion of a compressible operator on a Banach space, E, derives from automatic continuity arguments. It is related to the notion of a cartesian Banach space. The compressible operators on E form an ideal in ℬ(E) and the automatic continuity proofs depend on showing that this ideal is large. In particular, it is shown that each weakly compact operator on the James' space, J, is compressible, whence it follows that all homomorphisms from ℬ(J) are continuous.
We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori...
Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak-extreme points of the unit ball is discrete.
We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space . An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur...
We show that in a super-reflexive Banach space, the conditionality constants of a quasi-greedy basis ℬ grow at most like for some 0 < ε < 1. This extends results by the third-named author and Wojtaszczyk (2014), where this property was shown for quasi-greedy bases in for 1 < p < ∞. We also give an example of a quasi-greedy basis ℬ in a reflexive Banach space with .
Diversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of fiite metric spaces into L1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1 spaces. In the metric case, it iswell known that an n-point metric space can be embedded into L1 withO(log n) distortion. For diversities, the optimal distortion is unknown....
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
In this work, we construct, by means of the function space interpolation theory, a natural norm for a generic linear coercive and non-symmetric operator. We look for a norm which is the counterpart of the energy norm for symmetric operators. The natural norm allows for continuity and inf-sup conditions independent of the operator. Particularly we consider the convection-diffusion-reaction operator, for which we obtain continuity and inf-sup conditions that are uniform with respect to the operator...