Norms of projections on L... [ - 1, 1] and C [ -1, 1].
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the...
We introduce the spaces , , and of multifunctions. We prove that the spaces and are complete. Also, we get some convergence theorems.
Let denote the usual Hardy space of analytic functions on the unit disc . We prove that for every function there exists a linear operator defined on which is simultaneously bounded from to and from to such that . Consequently, we get the following results :1) is a Calderon-Mitjagin couple;2) for any interpolation functor , we have , where denotes the closed subspace of of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy...
We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30We obtain a criterion of Fredholmness and formula for the Fredholm index of a certain class of one-dimensional integral operators M with a weak singularity in the kernel, from the variable exponent Lebesgue space L^p(·) ([a, b], ?) to the Sobolev type space L^α,p(·) ([a, b], ?) of fractional smoothness. We also give formulas of closed form solutions ϕ ∈ L^p(·) of the 1st kind integral equation M0ϕ = f, known as the generalized...
Let and , where a(s) is a positive continuous function such that and b(s) is quasi-increasing and . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants and such that for all ; (jj) there exist positive constants and such that for all .
Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and , then , where C is a constant independent of f and g.