Displaying 841 – 860 of 1406

Showing per page

Optimal domains for kernel operators on [0,∞) × [0,∞)

Olvido Delgado (2006)

Studia Mathematica

Let T be a kernel operator with values in a rearrangement invariant Banach function space X on [0,∞) and defined over simple functions on [0,∞) of bounded support. We identify the optimal domain for T (still with values in X) in terms of interpolation spaces, under appropriate conditions on the kernel and the space X. The techniques used are based on the relation between linear operators and vector measures.

Optimal domains for the kernel operator associated with Sobolev's inequality

Guillermo P. Curbera, Werner J. Ricker (2003)

Studia Mathematica

Refinements of the classical Sobolev inequality lead to optimal domain problems in a natural way. This is made precise in recent work of Edmunds, Kerman and Pick; the fundamental technique is to prove that the (generalized) Sobolev inequality is equivalent to the boundedness of an associated kernel operator on [0,1]. We make a detailed study of both the optimal domain, providing various characterizations of it, and of properties of the kernel operator when it is extended to act in its optimal domain....

Optimal embeddings of generalized homogeneous Sobolev spaces

Irshaad Ahmed, Georgi Eremiev Karadzhov (2011)

Colloquium Mathematicae

We prove optimal embeddings of homogeneous Sobolev spaces built over function spaces in ℝⁿ with K-monotone and rearrangement invariant norm into other rearrangement invariant function spaces. The investigation is based on pointwise and integral estimates of the rearrangement or the oscillation of the rearrangement of f in terms of the rearrangement of the derivatives of f.

Optimal integrability of the Jacobian of orientation preserving maps

Andrea Cianchi (1999)

Bollettino dell'Unione Matematica Italiana

Dato un qualsiasi spazio invariante per riordinamenti X Ω su un insieme aperto Ω R n , si determina il più piccolo spazio invariante per riordinamenti Y Ω con la proprietà che se u : Ω R n è una applicazione che mantiene l'orientamento e D u n X Ω , allora det D u appartiene localmente a Y Ω .

Optimal Sobolev embeddings on Rn.

Jan Vybíral (2007)

Publicacions Matemàtiques

We study Sobolev-type embeddings involving rearrangement-invariant norms. In particular, we focus on the question when such embeddings are optimal. We concentrate on the case when the functions involved are defined on Rn. This subject has been studied before, but only on bounded domains. We first establish the equivalence of the Sobolev embedding to a new type of inequality involving two integral operators. Next, we show this inequality to be equivalent to the boundedness of a certain Hardy operator...

Optimal Sobolev imbedding spaces

Ron Kerman, Luboš Pick (2009)

Studia Mathematica

This paper continues our study of Sobolev-type imbedding inequalities involving rearrangement-invariant Banach function norms. In it we characterize when the norms considered are optimal. Explicit expressions are given for the optimal partners corresponding to a given domain or range norm.

Optimality of embeddings of Bessel-potential-type spaces into generalized Hölder spaces.

Amiran Gogatishvili, Júlio S. Neves, Bohumír Opic (2005)

Publicacions Matemàtiques

We establish the sharpness of embedding theorems for Bessel-potential spaces modelled upon Lorentz-Karamata spaces and we prove the non-compactness of such embeddings. Target spaces in our embeddings are generalized Hölder spaces. As consequences of our results, we get continuous envelopes of Bessel-potential spaces modelled upon Lorentz-Karamata spaces.

Orbits in symmetric spaces, II

N. J. Kalton, F. A. Sukochev, D. Zanin (2010)

Studia Mathematica

Suppose E is fully symmetric Banach function space on (0,1) or (0,∞) or a fully symmetric Banach sequence space. We give necessary and sufficient conditions on f ∈ E so that its orbit Ω(f) is the closed convex hull of its extreme points. We also give an application to symmetrically normed ideals of compact operators on a Hilbert space.

Order continuous seminorms and weak compactness in Orlicz spaces.

Marian Nowak (1993)

Collectanea Mathematica

Let L-phi be an Orlicz space defined by a Young function phi over a sigma-finite measure space, and let phi* denote the complementary function in the sense of Young. We give a characterization of the Mackey topology tau(L*,L-phi*) in terms of some family of norms defined by some regular Young functions. Next we describe order continuous (=absolutely continuous) Riesz seminorms on L-phi, and obtain a criterion for relative sigma(L-phi,L-phi*)-compactness in L-phi. As an application we get a representation...

Order convexity and concavity of Lorentz spaces Λ p , w , 0 < p < ∞

Anna Kamińska, Lech Maligranda (2004)

Studia Mathematica

We study order convexity and concavity of quasi-Banach Lorentz spaces Λ p , w , where 0 < p < ∞ and w is a locally integrable positive weight function. We show first that Λ p , w contains an order isomorphic copy of l p . We then present complete criteria for lattice convexity and concavity as well as for upper and lower estimates for Λ p , w . We conclude with a characterization of the type and cotype of Λ p , w in the case when Λ p , w is a normable space.

Orlicz boundedness for certain classical operators

E. Harboure, O. Salinas, B. Viviani (2002)

Colloquium Mathematicae

Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M Ω α , associated to an open bounded set Ω, to be bounded from the Orlicz space L ψ ( Ω ) into L ϕ ( Ω ) , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator I Ω α , 0...

Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data

Alberto Fiorenza, Alain Prignet (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We study the sequence u n , which is solution of - div ( a ( x , 𝔻 u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of 𝐑 N and u n = 0 on Ω , when f n tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N -function Φ , and prove a non-existence result.

Orlicz capacities and applications to some existence questions for elliptic pdes having measure data

Alberto Fiorenza, Alain Prignet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the sequence un, which is solution of - div ( a ( x , u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of RN and un= 0 on ∂Ω, when fn tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N-function Φ, and prove a non-existence result.

Orlicz spaces associated with a semi-finite von Neumann algebra

Sh. A. Ayupov, V. I. Chilin, R. Z. Abdullaev (2012)

Commentationes Mathematicae Universitatis Carolinae

Let M be a von Neumann algebra, let ϕ be a weight on M and let Φ be N -function satisfying the ( δ 2 , Δ 2 ) -condition. In this paper we study Orlicz spaces, associated with M , ϕ and Φ .

Currently displaying 841 – 860 of 1406