Displaying 1181 – 1200 of 1406

Showing per page

Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces

Krzysztof Feledziak (1998)

Commentationes Mathematicae Universitatis Carolinae

Some class of locally solid topologies (called uniformly μ -continuous) on Köthe-Bochner spaces that are continuous with respect to some natural two-norm convergence are introduced and studied. A characterization of uniformly μ -continuous topologies in terms of some family of pseudonorms is given. The finest uniformly μ -continuous topology 𝒯 I ϕ ( X ) on the Orlicz-Bochner space L ϕ ( X ) is a generalized mixed topology in the sense of P. Turpin (see [11, Chapter I]).

Unions et intersections d’espaces L p invariantes par translation ou convolution

Jean-Paul Bertrandias, Christian Datry, Christian Dupuis (1978)

Annales de l'institut Fourier

Étude des propriétés des unions et intersections d’espaces L p ( s ) relatifs à un ensemble S de mesures positives sur un groupe commutatif localement compact lorsque S est invariant par translation ou stable par convolution.Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.On étudie aussi les espaces p ( L p ' ) formés des fonctions appartenant localement à L p ' et qui ont un comportement p à l’infini.

[unknown]

G. Kyriazis (1998)

Studia Mathematica

We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces C p α ( d ) , 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the C p α ( d ) spaces in terms of the coefficients of wavelet decompositions.

Variable exponent Fock spaces

Gerardo R. Chacón, Gerardo A. Chacón (2020)

Czechoslovak Mathematical Journal

We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.

Variable exponent trace spaces

Lars Diening, Peter Hästö (2007)

Studia Mathematica

The trace space of W 1 , p ( · ) ( × [ 0 , ) ) consists of those functions on ℝⁿ that can be extended to functions of W 1 , p ( · ) ( × [ 0 , ) ) (as in the fixed-exponent case). Under the assumption that p is globally log-Hölder continuous, we show that the trace space depends only on the values of p on the boundary. In our main result we show how to define an intrinsic norm for the trace space in terms of a sharp-type operator.

Variable Lebesgue norm estimates for BMO functions

Mitsuo Izuki, Yoshihiro Sawano (2012)

Czechoslovak Mathematical Journal

In this paper, we are going to characterize the space BMO ( n ) through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space BMO ( n ) by using various function spaces. For example, Ho obtained a characterization of BMO ( n ) with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known...

Variations on Yano's extrapolation theorem.

David E. Edmunds, Miroslav Krbec (2005)

Revista Matemática Complutense

We give very short and transparent proofs of extrapolation theorems of Yano type in the framework of Lorentz spaces. The decomposition technique developed in Edmunds-Krbec (2000) enables us to obtain known and new results in a unified manner.

Vector series whose lacunary subseries converge

Lech Drewnowski, Iwo Labuda (2000)

Studia Mathematica

The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series n x n in a topological vector space X is called ℒ-convergent if each of its lacunary subseries k x n k (i.e. those with n k + 1 - n k ) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence...

Wavelet bases in L p ( )

Gustaf Gripenberg (1993)

Studia Mathematica

It is shown that an orthonormal wavelet basis for L 2 ( ) associated with a multiresolution is an unconditional basis for L p ( ) , 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.

Wavelet techniques for pointwise regularity

Stéphane Jaffard (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Let E be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with E , and denoted by C E α ( x 0 ) . We show how properties of E are transferred into properties of C E α ( x 0 ) . Applications are given in multifractal analysis.

Currently displaying 1181 – 1200 of 1406