-algebras associated to coverings of -graphs.
Ad un'algebra di von Neumann separabile , in forma standard su di uno spazio di Hilbert , si associa la algebra definita come la algebra costituita dai punti fissi dell'algebra di Cuntz generalizzata mediante l'azione canonica del gruppo degli unitari di . Si dà una caratterizzazione di nel caso in cui è un fattore iniettivo. In seguito, come applicazione della teoria dei sistemi asintoticamente abeliani, si mostra che, se è uno stato vettoriale normale e fedele di , la restrizione...
We show several examples of n.av̇alued fields with involution. Then, by means of a field of this kind, we introduce “n.aḢilbert spaces” in which the norm comes from a certain hermitian sesquilinear form. We study these spaces and the algebra of bounded operators which are defined on them and have an adjoint. Essential differences with respect to the usual case are observed.
For finite groups , and the right -action on by group automorphisms, the non-balanced quantum double is defined as the crossed product . We firstly prove that is a finite-dimensional Hopf -algebra. For any subgroup of , can be defined as a Hopf -subalgebra of in the natural way. Then there is a conditonal expectation from onto and the index is . Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the group algebra....
A Banach space has Pełczyński’s property (V) if for every Banach space every unconditionally converging operator is weakly compact. H. Pfitzner proved that -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that spaces for a compact Hausdorff space enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we...
We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of...
The topology and the structure of the set of the canonical extensions of positive, weakly continuous functionals from a von Neumann subalgebra to a von Neumann algebra M are described.