On the problem of invariance under holomorphic functions for a set of continuity points of the spectrum function
An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.
We calculate the spectral multiplicity of the direct sum T⊕ A of a weighted shift operator T on a Banach space Y which is continuously embedded in and a suitable bounded linear operator A on a Banach space X.
We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).
We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces (,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².