On strictly singular operators
In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
Let ϕ: [0,1] → [0,1] be a nondecreasing continuous function such that ϕ(x) > x for all x ∈ (0,1). Let the operator be defined on L₂[0,1]. We prove that has a finite number of nonzero eigenvalues if and only if ϕ(0) > 0 and ϕ(1-ε) = 1 for some 0 < ε < 1. Also, we show that the spectral trace of the operator always equals 1.
We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 < p < ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof...
In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions....
We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into...
Reaction-diffusion systems are studied under the assumptions guaranteeing diffusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral conditions given by quasivariational inequalities to this effect is described.
Kellogg's iterations in the eigenvalue problem are discussed with respect to the boundary spectrum of a linear normal operator.