Radial limits in co-invariant subspaces
An RD-space is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type having “dimension” , there exists a such that for certain classes of distributions, the quasi-norms of their radial maximal functions and grand maximal functions are equivalent when . This result yields a radial maximal function characterization for Hardy spaces on .
We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.
For a dynamical system (X,T,μ), we investigate the connections between a metric invariant, the rank r(T), and a spectral invariant, the maximal multiplicity m(T). We build examples of systems for which the pair (m(T),r(T)) takes values (m,m) for any integer m ≥ 1 or (p-1, p) for any prime number p ≥ 3.
Let A be an arbitrary, unital and semisimple Banach algebra with nonzero socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and H. Mouton) and the Drazin index for elements belonging to the socle of A. In particular, we show that the results for the finite-dimensional case can be extended to the (infinite-dimensional) socle of A.
For 0 ≤ α < 1, an operator U ∈ L(X,Y) is called a rank α operator if implies Uxₙ → Ux in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators U: C(T,X) → Y in terms of their representing measures.
We prove ratio Tauberian theorems for relatively bounded functions and sequences in Banach spaces.
Reaction-diffusion systems are studied under the assumptions guaranteeing diffusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral conditions given by quasivariational inequalities to this effect is described.
In these notes we report on recent progress in the theory of hypercyclic and chaotic operators. Our discussion will be guided by the following fundamental problems: How do we recognize hypercyclic operators? How many vectors are hypercyclic? How many operators are hypercyclic? How big can non-dense orbits be?
The aim of this paper is to review the state-of-the-art of recent research concerning the numerical index of Banach spaces, by presenting some of the results found in the last years and proposing a number of related open problems.
We discuss an exact reconstruction algorithm for time expanding semi-algebraic sets given by a single polynomial inequality. The theoretical motivation comes from the classical -problem of moments, while some possible applications to 2D fluid moving boundaries are sketched. The proofs rely on an adapted co-area theorem and a Hankel form minimization.
Let be a Banach space, the algebra of bounded linear operators on and an admissible Banach ideal of . For , let and denote the left and right multiplication defined by and , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between , and their elementary operators and . In particular, we give necessary and sufficient conditions for and to be sequentially recurrent. Furthermore, we prove that is recurrent if and only...