The stability radius of a bundle of closed linear operators
A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.
In this report we discuss the applications of the strong unicity constant and highlight its use in the minimal projection problem.
The sum-product algorithm is a well-known procedure for marginalizing an “acyclic” product function whose range is the ground set of a commutative semiring. The algorithm is general enough to include as special cases several classical algorithms developed in information theory and probability theory. We present four results. First, using the sum-product algorithm we show that the variable sets involved in an acyclic factorization satisfy a relation that is a natural generalization of probability-theoretic...
In this paper we consider a class of three-term recurrence relations, whose associated tridiagonal matrices are subnormal operators. In this cases, there are measures associated to the polynomials given by such relations. We study the support of these measures.
Suppose is a nonnegative, locally integrable, radial function on , which is nonincreasing in . Set when and . Given and , we show there exists so that for all , if and only if exists with for all dyadic cubes Q, where . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.
This paper is a continuation of our previous investigations on the truncated matrix trigonometric moment problem in Ukrainian Math. J., 2011, 63, no. 6, 786-797, and Ukrainian Math. J., 2013, 64, no. 8, 1199- 1214. In this paper we shall study the truncated matrix trigonometric moment problem with an additional constraint posed on the matrix measure MT(δ), δ ∈ B(T), generated by the seeked function M(x): MT(∆) = 0, where ∆ is a given open subset of T (called a gap). We present necessary and sufficient...
Let A be a pseudodifferential operator on whose Weyl symbol a is a strictly positive smooth function on such that for some ϱ>0 and all |α|>0, is bounded for large |α|, and . Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.
The aim of this paper is to use an abstract realization of the Weyl correspondence to define functions of pseudo-differential operators. We consider operators that form a self-adjoint Banach algebra. We construct on this algebra a functional calculus with respect to functions which are defined on the Euclidean space and have a finite number of derivatives.