On the Convergence of an Inverse Iteration Method for Nonlinear Elliptic Eigenvalue Problems.
K. Georg (1979)
Numerische Mathematik
Ricardo de Arcangelis, Patrizia Donato (1987)
Studia Mathematica
Bagh, Adib (2001)
Abstract and Applied Analysis
Alain Piétrus, Célia Jean-Alexis (2008)
RACSAM
Paola Pietra, Claudio Verdi (1985)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
Guy Barles, Espen Robstad Jakobsen (2002)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Using systematically a tricky idea of N.V. Krylov, we obtain general results on the rate of convergence of a certain class of monotone approximation schemes for stationary Hamilton-Jacobi-Bellman equations with variable coefficients. This result applies in particular to control schemes based on the dynamic programming principle and to finite difference schemes despite, here, we are not able to treat the most general case. General results have been obtained earlier by Krylov for finite difference...
Guy Barles, Espen Robstad Jakobsen (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
Using systematically a tricky idea of N.V. Krylov, we obtain general results on the rate of convergence of a certain class of monotone approximation schemes for stationary Hamilton-Jacobi-Bellman equations with variable coefficients. This result applies in particular to control schemes based on the dynamic programming principle and to finite difference schemes despite, here, we are not able to treat the most general case. General results have been obtained earlier by Krylov for finite...
Ornella Naselli Ricceri (1991)
Commentationes Mathematicae Universitatis Carolinae
We study the covering dimension of the fixed point set of lower semicontinuous multifunctions of which many values can be non-closed or non-convex. An application to variational inequalities is presented.
Shin-ichi Ohta (2014)
Analysis and Geometry in Metric Spaces
We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
Peter Lindqvist (1986)
Journal für die reine und angewandte Mathematik
Paolo Marcellini (1986)
Annales de l'I.H.P. Analyse non linéaire
Kumar, Ramesh C., Naqib, Fadle M. (1995)
International Journal of Mathematics and Mathematical Sciences
Andrei Dmitruk (2009)
Control and Cybernetics
Bernard Dacorogna, Hideyuki Koshigoe (1993)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Giuseppe Devillanova, Sergio Solimini (2007)
Rendiconti del Seminario Matematico della Università di Padova
Ekici, Erdal (2003)
Boletín de la Asociación Matemática Venezolana
Bardi, M., Bottacin, S. (1998)
Rendiconti del Seminario Matematico
Yohei Kashima (2008)
ESAIM: Mathematical Modelling and Numerical Analysis
In this paper we mathematically analyse an evolution variational inequality which formulates the double critical-state model for type-II superconductivity in 3D space and propose a finite element method to discretize the formulation. The double critical-state model originally proposed by Clem and Perez-Gonzalez is formulated as a model in 3D space which characterizes the nonlinear relation between the electric field, the electric current, the perpendicular component of the electric current...
Luigi Ambrosio, Simone Di Marino, Giuseppe Savaré (2015)
Journal of the European Mathematical Society
Motivated by recent developments on calculus in metric measure spaces , we prove a general duality principle between Fuglede’s notion [15] of -modulus for families of finite Borel measures in and probability measures with barycenter in , with dual exponent of . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in . In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence...
H.D. Mittelmann (1980/1981)
Numerische Mathematik