Displaying 361 – 380 of 4417

Showing per page

A topological asymptotic analysis for the regularized grey-level image classification problem

Didier Auroux, Lamia Jaafar Belaid, Mohamed Masmoudi (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical variational approach without and with a regularization term in order to smooth the contours of the classified image. Then we present the general topological asymptotic analysis, and we finally introduce its application to the grey-level image classification problem.

A two well Liouville theorem

Andrew Lorent (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller. Let H = σ 0 0 σ - 1 for σ > 0 . Let 0 < ζ 1 < 1 < ζ 2 < . Let K : = S O 2 S O 2 H . Let u W 2 , 1 Q 1 0 be a C 1 invertible bilipschitz function with Lip u < ζ 2 , Lip u - 1 < ζ 1 - 1 . There exists positive constants 𝔠 1 < 1 and 𝔠 2 > 1 depending only on σ , ζ 1 , ζ 2 such that if ϵ 0 , 𝔠 1 and u satisfies the...

A Two Well Liouville Theorem

Andrew Lorent (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller.
Let H = σ 0 0 σ - 1 for σ > 0 . Let 0 < ζ 1 < 1 < ζ 2 < . Let K : = S O 2 S O 2 H . Let u W 2 , 1 Q 1 0 be a invertible bilipschitz function with Lip u < ζ 2 , Lip u - 1 < ζ 1 - 1 . 
There exists positive constants 𝔠 1 < 1 and 𝔠 2 > 1 depending only on σ, ζ 1 , ζ 2 such that if ϵ 0 , 𝔠 1 and u satisfies...

A unilateral boundary-value problem for the rod

Miroslav Bosák (1988)

Aplikace matematiky

A unilateral boundary-value condition at the left end of a simply supported rod is considered. Variational and (equivalent) classical formulations are introduced and all solutions to the classical problem are calculated in an explicit form. Formulas for the energies corresponding to the solutions are also given. The problem is solved and energies of the solutions are compared in the pertubed as well as the unperturbed cases.

A unilateral contact problem with slip-dependent friction

Arezki Touzaline (2016)

Applicationes Mathematicae

We consider a mathematical model which describes a static contact between a nonlinear elastic body and an obstacle. The contact is modelled with Signorini's conditions, associated with a slip-dependent version of Coulomb's nonlocal friction law. We derive a variational formulation and prove its unique weak solvability. We also study the finite element approximation of the problem and obtain an optimal error estimate under extra regularity for the solution. Finally, we establish the convergence of...

A variational approach to implicit ODEs and differential inclusions

Sergio Amat, Pablo Pedregal (2009)

ESAIM: Control, Optimisation and Calculus of Variations

An alternative approach for the analysis and the numerical approximation of ODEs, using a variational framework, is presented. It is based on the natural and elementary idea of minimizing the residual of the differential equation measured in a usual Lp norm. Typical existence results for Cauchy problems can thus be recovered, and finer sets of assumptions for existence are made explicit. We treat, in particular, the cases of an explicit ODE and a differential inclusion. This approach also allows...

A variational inequality for discontinuous solutions of degenerate parabolic equations.

Lorina Dascal, Shoshana Kamin, Nir A. Sochen (2005)

RACSAM

The Beltrami framework for image processing and analysis introduces a non-linear parabolic problem, called in this context the Beltrami flow. We study in the framework for functions of bounded variation, the well-posedness of the Beltrami flow in the one-dimensional case. We prove existence and uniqueness of the weak solution using lower semi-continuity results for convex functions of measures. The solution is defined via a variational inequality, following Temam?s technique for the evolution problem...

A variational model for equilibrium problems in a traffic network

Giandomenico Mastroeni, Massimo Pappalardo (2004)

RAIRO - Operations Research - Recherche Opérationnelle

We propose a variational model for one of the most important problems in traffic networks, namely, the network equilibrium flow that is, traditionally in the context of operations research, characterized by minimum cost flow. This model has the peculiarity of being formulated by means of a suitable variational inequality (VI) and its solution is called “equilibrium”. This model becomes a minimum cost model when the cost function is separable or, more general, when the jacobian of the cost operator...

A variational model for equilibrium problems in a traffic network

Giandomenico Mastroeni, Massimo Pappalardo (2010)

RAIRO - Operations Research

We propose a variational model for one of the most important problems in traffic networks, namely, the network equilibrium flow that is, traditionally in the context of operations research, characterized by minimum cost flow. This model has the peculiarity of being formulated by means of a suitable variational inequality (VI) and its solution is called “equilibrium”. This model becomes a minimum cost model when the cost function is separable or, more general, when the Jacobian of the cost operator...

A variational model for urban planning with traffic congestion

Guillaume Carlier, Filippo Santambrogio (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a variational model to describe the optimal distributions of residents and services in an urban area. The functional to be minimized involves an overall transportation cost taking into account congestion effects and two aditional terms which penalize concentration of residents and dispersion of services. We study regularity properties of the minimizers and treat in details some examples.

A variational model for urban planning with traffic congestion

Guillaume Carlier, Filippo Santambrogio (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a variational model to describe the optimal distributions of residents and services in an urban area. The functional to be minimized involves an overall transportation cost taking into account congestion effects and two aditional terms which penalize concentration of residents and dispersion of services. We study regularity properties of the minimizers and treat in details some examples.

A variational model in image processing with focal points

Andrea Braides, Giuseppe Riey (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a model for segmentation problems involving an energy concentrated on the vertices of an unknown polyhedral set, where the contours of the images to be recovered have preferred directions and focal points. We prove that such an energy is obtained as a Γ-limit of functionals defined on sets with smooth boundary that involve curvature terms of the boundary. The minimizers of the limit functional are polygons with edges either parallel to some prescribed directions or pointing to some fixed...

Currently displaying 361 – 380 of 4417