An Extremal Problem Involving Functions and Their Inverses.
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...
A game is considered where the communication network of the first player is explicitly modelled. The second player may induce delays in this network, while the first player may counteract such actions. Costs are modelled through expectations over idempotent probability measures. The idempotent probabilities are conditioned by observational data, the arrival of which may have been delayed along the communication network. This induces a game where the state space consists of the network delays. Even...
In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions...
In this paper, control-oriented modeling approaches are presented for distributed parameter systems. These systems, which are in the focus of this contribution, are assumed to be described by suitable partial differential equations. They arise naturally during the modeling of dynamic heat transfer processes. The presented approaches aim at developing finitedimensional system descriptions for the design of various open-loop, closed-loop, and optimal control strategies as well as state, disturbance,...
Given a nonempty convex set in a locally convex Hausdorff topological vector space, a nonempty set and two set-valued mappings , we prove that under suitable conditions one can find an which is simultaneously a fixed point for and a common point for the family of values of . Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.