Displaying 581 – 600 of 683

Showing per page

Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market∗

René Henrion, Jiří Outrata, Thomas Surowiec (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order...

Anisotropic functions : a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In the 1950’s and 1960’s surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments...

Anisotropic functions: a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the 1950's and 1960's surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments...

Anti-periodic solutions to a parabolic hemivariational inequality

Jong Yeoul Park, Hyun Min Kim, Sun Hye Park (2004)

Kybernetika

In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form b ( u ) , where b L loc ( R ) . Extending b to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.

Application of homogenization theory related to Stokes flow in porous media

Børre Bang, Dag Lukkassen (1999)

Applications of Mathematics

We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.

Application of relaxation scheme to degenerate variational inequalities

Jela Babušíková (2001)

Applications of Mathematics

In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved.

Currently displaying 581 – 600 of 683