Displaying 61 – 80 of 272

Showing per page

Commutative neutrix convolution products of functions

Brian Fisher, Adem Kiliçman (1994)

Commentationes Mathematicae Universitatis Carolinae

The commutative neutrix convolution product of the functions x r e - λ x and x s e + μ x is evaluated for r , s = 0 , 1 , 2 , ... and all λ , μ . Further commutative neutrix convolution products are then deduced.

Compactness of Special Functions of Bounded Higher Variation

Luigi Ambrosio, Francesco Ghiraldin (2013)

Analysis and Geometry in Metric Spaces

Given an open set Ω ⊂ Rm and n > 1, we introduce the new spaces GBnV(Ω) of Generalized functions of bounded higher variation and GSBnV(Ω) of Generalized special functions of bounded higher variation that generalize, respectively, the space BnV introduced by Jerrard and Soner in [43] and the corresponding SBnV space studied by De Lellis in [24]. In this class of spaces, which allow as in [43] the description of singularities of codimension n, the distributional jacobian Ju need not have finite...

Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations

Alessandra Cutrì, Francesca Da Lio (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove a comparison result between semicontinuous viscosity subsolutions and supersolutions to Hamilton-Jacobi equations of the form u t + H ( x , D u ) = 0 in I R n × ( 0 , T ) where the Hamiltonian H may be noncoercive in the gradient Du. As a consequence of the comparison result and the Perron's method we get the existence of a continuous solution of this equation.

Comparison between different duals in multiobjective fractional programming

Radu Boţ, Robert Chares, Gert Wanka (2007)

Open Mathematics

The present paper is a continuation of [2] where we deal with the duality for a multiobjective fractional optimization problem. The basic idea in [2] consists in attaching an intermediate multiobjective convex optimization problem to the primal fractional problem, using an approach due to Dinkelbach ([6]), for which we construct then a dual problem expressed in terms of the conjugates of the functions involved. The weak, strong and converse duality statements for the intermediate problems allow...

Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric.

Zoltán M. Balogh, Matthieu Rickly, Francesco Serra Cassano (2003)

Publicacions Matemàtiques

We compare the Hausdorff measures and dimensions with respect to the Euclidean and Heisenberg metrics on the first Heisenberg group. The result is a dimension jump described by two inequalities. The sharpness of our estimates is shown by examples. Moreover a comparison between Euclidean and H-rectifiability is given.

Comparison of six models of antiangiogenic therapy

Andrzej Świerniak (2009)

Applicationes Mathematicae

Six models of antiangiogenic therapy are compared and analyzed from control-theoretic point of view. All of them consist of a model of tumor growth bounded by the capacity of a vascular network developed by the tumor in the process of angiogenesis and different models of dynamics of this network, and are based on the idea proposed by Hahnfeldt et al. Moreover, we analyse optimal control problems resulting from their use in treatment protocol design.

Comparison principle approach to utility maximization

Peter Imkeller, Victor Nzengang (2015)

Banach Center Publications

We consider the problem of optimal investment for maximal expected utility in an incomplete market with trading strategies subject to closed constraints. Under the assumption that the underlying utility function has constant sign, we employ the comparison principle for BSDEs to construct a family of supermartingales leading to a necessary and sufficient condition for optimality. As a consequence, the value function is characterized as the initial value of a BSDE with Lipschitz growth.

Currently displaying 61 – 80 of 272