Displaying 61 – 80 of 434

Showing per page

Sensitivity Analysis of a Nonlinear Obstacle Plate Problem

Isabel N. Figueiredo, Carlos F. Leal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9,10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that...

Sensitivity analysis of solutions to a class of quasi-variational inequalities

Samir Adly, Mohamed Ait Mansour, Laura Scrimali (2005)

Bollettino dell'Unione Matematica Italiana

We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality Q V I u K u , C u , v - u 0 , v K u , when both the operator C and the convex K are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).

Sensitivity examination of the simulation result of discrete event dynamic systems with perturbation analysis.

Tamas Koltai, Juan Carlos Larrañeta, Luis Onieva, Sebastián Lozano (1994)

Qüestiió

Simulation completed with perturbation analysis provides a new approach for the optimal control of queuing network type systems. The objective of this paper is to calculate the sensitivity range of finite zero-order perturbation, that is, to determine the maximum and minimum size of perturbation within which zero-order propagation rules can be applied. By the introduction of the concept of virtual queue and first and second level no-input and full-output matrices, an algorithm is provided which...

Sensor network design for the estimation of spatially distributed processes

Dariusz Uciński, Maciej Patan (2010)

International Journal of Applied Mathematics and Computer Science

In a typical moving contaminating source identification problem, after some type of biological or chemical contamination has occurred, there is a developing cloud of dangerous or toxic material. In order to detect and localize the contamination source, a sensor network can be used. Up to now, however, approaches aiming at guaranteeing a dense region coverage or satisfactory network connectivity have dominated this line of research and abstracted away from the mathematical description of the physical...

Sets of finite perimeter associated with vector fields and polyhedral approximation

Francescopaolo Montefalcone (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let X = X 1 , , X m be a family of bounded Lipschitz continuous vector fields on R n . In this paper we prove that if E is a set of finite X -perimeter then his X -perimeter is the limit of the X -perimeters of a sequence of euclidean polyhedra approximating E in L 1 -norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.

Shape and topological sensitivity analysis in domains with cracks

Alexander Khludnev, Jan Sokołowski, Katarzyna Szulc (2010)

Applications of Mathematics

The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...

Shape and topology optimization of the robust compliance via the level set method

François Jouve, Grégoire Allaire, Frédéric de Gournay (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute it....

Shape and topology optimization of the robust compliance via the level set method

Frédéric de Gournay, Grégoire Allaire, François Jouve (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute...

Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach

Zhiming Gao, Yichen Ma, Hong Wei Zhuang (2007)

Czechoslovak Mathematical Journal

The goal of this paper is to compute the shape Hessian for a generalized Oseen problem with nonhomogeneous Dirichlet boundary condition by the velocity method. The incompressibility will be treated by penalty approach. The structure of the shape gradient and shape Hessian with respect to the shape of the variable domain for a given cost functional are established by an application of the Lagrangian method with function space embedding technique.

Currently displaying 61 – 80 of 434