Shape identification via metrics constructed from the oriented distance function
A model shape optimal design in is solved by means of the penalty method with extrapolation, which enables to obtain high order approximations of both the state function and the boundary flux, thus offering a reliable gradient for the sensitivity analysis. Convergence of the proposed method is proved for certain subsequences of approximate solutions.
This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds. The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under the assumption...
The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and the necessary optimality condition is formulated.
We study the Stokes problems in a bounded planar domain with a friction type boundary condition that switches between a slip and no-slip stage. Our main goal is to determine under which conditions concerning the smoothness of solutions to the Stokes system with the slip boundary conditions depend continuously on variations of . Having this result at our disposal, we easily prove the existence of a solution to optimal shape design problems for a large class of cost functionals. In order to release...
The paper deals with the approximation of optimal shape of elastic bodies, unilaterally supported by a rigid, frictionless foundation. Original state inequality, describing the behaviour of such a body is replaced by a family of penalized state problems. The relation between optimal shapes for the original state inequality and those for penalized state equations is established.
The state problem of elasto-plasticity (for the model with strain-hardening) is formulated in terms of stresses and hardening parameters by means of a time-dependent variational inequality. The optimal design problem is to find the shape of a part of the boundary such that a given cost functional is minimized. For the approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant triangular elements for the stress and the hardening parameter, and backward differences...
The shape of the meridian curve of an elastic body is optimized within a class of Lipschitz functions. Only axisymmetric mixed boundary value problems are considered. Four different cost functionals are used and approximate piecewise linear solutions defined on the basis of a finite element technique. Some convergence and existence results are derived by means of the theory of the appropriate weighted Sobolev spaces.
Existence of an optimal shape of a deformable body made from a physically nonlinear material obeying a specific nonlinear generalized Hooke’s law (in fact, the so called deformation theory of plasticity is invoked in this case) is proved. Approximation of the problem by finite elements is also discussed.
A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included.
This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising....
This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising. ...