Error bounds for convex constrained systems in Banach spaces
We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.
The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.
In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.
The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states....
The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L∞ norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states. ...
Ce travail est essentiellement consacré aux systèmes dynamiques non conservatifs, la force généralisée dépendant à la fois des paramètres de position et de vitesse . désignant l’espace-temps de configuration, l’espace fibré des vecteurs tangents, celui des directions tangentes à , on caractérise par son lagrangien homogène et le tenseur-force antisymétrique dont le produit contracté par le vecteur vitesse donne le vecteur force généralisé.Dans la première partie, on étudie l’algèbre...