Displaying 61 – 80 of 248

Showing per page

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2002)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2010)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equilibrium of maximal monotone operator in a given set

Dariusz Zagrodny (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].

Equilibrium search model with endogenous growth rate of human capital

Wansheng Tang, Chi Zhou, Chaoqun Xiao, Ruiqing Zhao (2016)

Kybernetika

This article studies an equilibrium search problem when jobs provided by firms can be either unskilled or skilled and when workers differing in their education level can be either low-educated or high-educated. The structure proportion of jobs affects the equilibrium which indicates a threshold that can distinguish whether the equilibrium is separating or cross-skill. In addition, the cross-skill equilibrium solution implies the high-educated workers are more likely to obtain higher pay rates than...

Equivalent cost functionals and stochastic linear quadratic optimal control problems

Zhiyong Yu (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the stochastic linear quadratic optimal control problems (LQ problems, for short) for which the coefficients are allowed to be random and the cost functionals are allowed to have negative weights on the square of control variables. We propose a new method, the equivalent cost functional method, to deal with the LQ problems. Comparing to the classical methods, the new method is simple, flexible and non-abstract. The new method can also be applied to deal with nonlinear...

Equivalent formulation and numerical analysis of a fire confinement problem

Alberto Bressan, Tao Wang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a class of variational problems for differential inclusions, related to the control of wild fires. The area burned by the fire at time t> 0 is modelled as the reachable set for a differential inclusion x ˙ ∈F(x), starting from an initial set R0. To block the fire, a barrier can be constructed progressively in time. For each t> 0, the portion of the wall constructed within time t is described by a rectifiable set γ(t) ⊂ 2 . In this paper we show that the search for blocking strategies...

Ergodic control of linear stochastic equations in a Hilbert space with fractional Brownian motion

Tyrone E. Duncan, B. Maslowski, B. Pasik-Duncan (2015)

Banach Center Publications

A linear-quadratic control problem with an infinite time horizon for some infinite dimensional controlled stochastic differential equations driven by a fractional Brownian motion is formulated and solved. The feedback form of the optimal control and the optimal cost are given explicitly. The optimal control is the sum of the well known linear feedback control for the associated infinite dimensional deterministic linear-quadratic control problem and a suitable prediction of the adjoint optimal system...

Currently displaying 61 – 80 of 248