Displaying 101 – 120 of 248

Showing per page

Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems

Xue-Fang Wang, Zhenhua Deng, Song Ma, Xian Du (2017)

Kybernetika

In this paper, a distributed optimal consensus problem is investigated to achieve the optimization of the sum of local cost function for a group of agents in the Euler-Lagrangian (EL) system form. We consider that the local cost function of each agent is only known by itself and cannot be shared with others, which brings challenges in this distributed optimization problem. A novel gradient-based distributed continuous-time algorithm with the parameters of EL system is proposed, which takes the distributed...

Everywhere regularity for vectorial functionals with general growth

Elvira Mascolo, Anna Paola Migliorini (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is F u = Ω a ( x ) [ h | D u | ] p ( x ) d x with h a convex function with general growth (also exponential behaviour is allowed).

Everywhere regularity for vectorial functionals with general growth

Elvira Mascolo, Anna Paola Migliorini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is F u = Ω a ( x ) [ h | D u | ] p ( x ) d x with h a convex function with general growth (also exponential behaviour is allowed).

Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms

Thomas Lorenz (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarly to quasidifferential equations of Panasyuk, the so-called mutational equations of Aubin provide a generalization of ordinary differential equations to locally compact metric spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance. In spite of lacking any linear structures, a distribution-like approach leads to so-called right-hand forward solutions. These extensions are mainly motivated by compact subsets of the Euclidean space...

Evolution inclusions of the subdifferential type depending on a parameter

Dimitrios A. Kandilakis, Nikolaos S. Papageorgiou (1992)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study evolution inclusions generated by time dependent convex subdifferentials, with the orientor field F depending on a parameter. Under reasonable hypotheses on the data, we show that the solution set S ( λ ) is both Vietoris and Hausdorff metric continuous in λ Λ . Using these results, we study the variational stability of a class of nonlinear parabolic optimal control problems.

Evolution of structure for direct control optimization

Maciej Szymkat, Adam Korytowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The paper presents the Monotone Structural Evolution, a direct computational method of optimal control. Its distinctive feature is that the decision space undergoes gradual evolution in the course of optimization, with changing the control parameterization and the number of decision variables. These structural changes are based on an analysis of discrepancy between the current approximation of an optimal solution and the Maximum Principle conditions. Two particular implementations, with spike and...

Evolutionary problems in non-reflexive spaces

Martin Kružík, Johannes Zimmer (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent problems are considered, where the stored energy density is a function of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly. Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-independent process is shown in the so-called energetic formulation.

Evolutionary variational inequalities and applications in plasticity

Jindřich Nečas, Luděk Trávníček (1980)

Aplikace matematiky

An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.

Exact controllability of a pluridimensional coupled problem.

Serge Nicaise (1992)

Revista Matemática de la Universidad Complutense de Madrid

We set a coupled boundary value problem between two domains of different dimension. The first one is the unit cube of Rn, n C [2,3], with a crack and the second one is the crack. this problem comes from Ciarlet et al. (1989), that obtained an analogous coupled problem. We show that the solution has singularities due to the crack. As in Grisvard (1989), we adapt the Hilbert uniqueness method of J.-L. Lions (1968,1988) in order to obtain the exact controllability of the associated wave equation with...

Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case

Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guerrero, Jean-Pierre Puel (2006)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form y n + f ( y ) = 0 . We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear, one...

Currently displaying 101 – 120 of 248