Étude d'un système de contrôle optimal perturbé non classique
In this paper, a distributed optimal consensus problem is investigated to achieve the optimization of the sum of local cost function for a group of agents in the Euler-Lagrangian (EL) system form. We consider that the local cost function of each agent is only known by itself and cannot be shared with others, which brings challenges in this distributed optimization problem. A novel gradient-based distributed continuous-time algorithm with the parameters of EL system is proposed, which takes the distributed...
We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models iswith a convex function with general growth (also exponential behaviour is allowed).
We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is with h a convex function with general growth (also exponential behaviour is allowed).
Similarly to quasidifferential equations of Panasyuk, the so-called mutational equations of Aubin provide a generalization of ordinary differential equations to locally compact metric spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance. In spite of lacking any linear structures, a distribution-like approach leads to so-called right-hand forward solutions. These extensions are mainly motivated by compact subsets of the Euclidean space...
In this paper we study evolution inclusions generated by time dependent convex subdifferentials, with the orientor field depending on a parameter. Under reasonable hypotheses on the data, we show that the solution set is both Vietoris and Hausdorff metric continuous in . Using these results, we study the variational stability of a class of nonlinear parabolic optimal control problems.
The paper presents the Monotone Structural Evolution, a direct computational method of optimal control. Its distinctive feature is that the decision space undergoes gradual evolution in the course of optimization, with changing the control parameterization and the number of decision variables. These structural changes are based on an analysis of discrepancy between the current approximation of an optimal solution and the Maximum Principle conditions. Two particular implementations, with spike and...
Rate-independent problems are considered, where the stored energy density is a function of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly. Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-independent process is shown in the so-called energetic formulation.
An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.
We set a coupled boundary value problem between two domains of different dimension. The first one is the unit cube of Rn, n C [2,3], with a crack and the second one is the crack. this problem comes from Ciarlet et al. (1989), that obtained an analogous coupled problem. We show that the solution has singularities due to the crack. As in Grisvard (1989), we adapt the Hilbert uniqueness method of J.-L. Lions (1968,1988) in order to obtain the exact controllability of the associated wave equation with...
This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form . We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear, one...