The lightest plane structures of a bounded stress level transmitting a point load to a circular support
Given a deterministic optimal control problem (OCP) with value function, say , we introduce a linear program and its dual whose values satisfy . Then we give conditions under which (i) there is no duality gap
In questo lavoro si considera il problema del controllo ottimo per un'equazione lineare con ritardo in uno spazio di Hilbert, con costo quadratico. Si dimostra che il problema della sintesi si traduce in una equazione di Riccati in uno opportuno spazio prodotto e si prova che tale equazione ammette un’unica soluzione.
The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of is the weak limit (in the sense of distributions) of the mean...
We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small -perturbations.
We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.
In this paper, we propose an industrial symbiosis network equilibrium model by using nonlinear complementarity theory. The industrial symbiosis network consists of industrial producers, industrial consumers, industrial decomposers and demand markets, which imitates natural ecosystem by means of exchanging by-products and recycling useful materials exacted from wastes. The industrial producers and industrial consumers are assumed to be concerned with maximization of economic profits as well as minimization...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing...