Displaying 121 – 140 of 434

Showing per page

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...

Singular perturbations in optimal control problem with application to nonlinear structural analysis

Ján Lovíšek (1996)

Applications of Mathematics

This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result...

Singular points of order k of Clarke regular and arbitrary functions

Luděk Zajíček (2012)

Commentationes Mathematicae Universitatis Carolinae

Let X be a separable Banach space and f a locally Lipschitz real function on X . For k , let Σ k ( f ) be the set of points x X , at which the Clarke subdifferential C f ( x ) is at least k -dimensional. It is well-known that if f is convex or semiconvex (semiconcave), then Σ k ( f ) can be covered by countably many Lipschitz surfaces of codimension k . We show that this result holds even for each Clarke regular function (and so also for each approximately convex function). Motivated by a resent result of A.D. Ioffe, we prove...

Sixty years of cybernetics: a comparison of approaches to solving the H 2 control problem

Vladimír Kučera (2008)

Kybernetika

The H2 control problem consists of stabilizing a control system while minimizing the H2 norm of its transfer function. Several solutions to this problem are available. For systems in state space form, an optimal regulator can be obtained by solving two algebraic Riccati equations. For systems described by transfer functions, either Wiener-Hopf optimization or projection results can be applied. The optimal regulator is then obtained using operations with proper stable rational matrices: inner-outer...

Size minimizing surfaces

Thierry De Pauw (2009)

Annales scientifiques de l'École Normale Supérieure

We prove a new existence theorem pertaining to the Plateau problem in 3 -dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.

Slice convergence : stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM : COCV 9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d’Attouch-Wets est stable par une classe d’opérations classiques de l’analyse convexe, lorsque les limites des suites d’ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Slice convergence: stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM: COCV9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d'Attouch-Wets est stable par une classe d'opérations classiques de l'analyse convexe, lorsque les limites des suites d'ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Smooth bifurcation for a Signorini problem on a rectangle

Jan Eisner, Milan Kučera, Lutz Recke (2012)

Mathematica Bohemica

We study a parameter depending semilinear elliptic PDE on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. We describe smooth branches of smooth nontrivial solutions bifurcating from the trivial solution branch in eigenvalues of the linearized problem. In particular, the contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tools of the proof...

Smooth optimal synthesis for infinite horizon variational problems

Andrei A. Agrachev, Francesca C. Chittaro (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification for...

Currently displaying 121 – 140 of 434