Displaying 161 – 180 of 272

Showing per page

The summability of solutions to variational problems since Guido Stampacchia.

Lucio Boccardo (2003)

RACSAM

Inequalities concerning the integral of |∇u|2 on the subsets where |u(x)| is greater than k can be used in order to prove regularity properties of the function u. This method was introduced by Ennio De Giorgi e Guido Stampacchia for the study of the regularity of the solutions of Dirichlet problems.

The symmetry reduction of variational integrals

Václav Tryhuk, Veronika Chrastinová (2018)

Mathematica Bohemica

The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized. The article deals with one-dimensional variational integral subject to differential constraints, the Lagrange variational problem, that admits the Lie group of symmetries. Reduction to the orbit space is investigated in the absolute sense relieved of all accidental structures. In particular, the widest possible coordinate-free approach to the underdetermined...

The symmetry reduction of variational integrals, complement

Veronika Chrastinová, Václav Tryhuk (2018)

Mathematica Bohemica

Some open problems appearing in the primary article on the symmetry reduction are solved. A new and quite simple coordinate-free definition of Poincaré-Cartan forms and the substance of divergence symmetries (quasisymmetries) are clarified. The unbeliavable uniqueness and therefore the global existence of Poincaré-Cartan forms without any uncertain multipliers for the Lagrange variational problems are worth extra mentioning.

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2005)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The value function representing Hamilton–Jacobi equation with hamiltonian depending on value of solution

A. Misztela (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In the paper we investigate the regularity of the value function representing Hamilton–Jacobi equation: − Ut + H(t, x, U, − Ux) = 0 with a final condition: U(T,x) = g(x). Hamilton–Jacobi equation, in which the Hamiltonian H depends on the value of solution U, is represented by the value function with more complicated structure than the value function in Bolza problem. This function is described with the use of some class of Mayer problems related to the optimal control theory and the calculus of...

The vanishing viscosity method in infinite dimensions

Piermarco Cannarsa, Giuseppe Da Prato (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.

Currently displaying 161 – 180 of 272