Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Continuous limits of discrete perimeters

Antonin Chambolle, Alessandro Giacomini, Luca Lussardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a class of discrete convex functionals which satisfy a (generalized) coarea formula. These functionals, based on submodular interactions, arise in discrete optimization and are known as a large class of problems which can be solved in polynomial time. In particular, some of them can be solved very efficiently by maximal flow algorithms and are quite popular in the image processing community. We study the limit in the continuum of these functionals, show that they always converge...

Control in obstacle-pseudoplate problems with friction on the boundary. optimal design and problems with uncertain data

Ivan Hlaváček, Ján Lovíšek (2001)

Applicationes Mathematicae

Four optimal design problems and a weight minimization problem are considered for elastic plates with small bending rigidity, resting on a unilateral elastic foundation, with inner rigid obstacles and a friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. If some input data are allowed to be uncertain a new method of reliable solutions is employed....

Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation

Daniel Matthes, Horst Osberger (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation’s gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We...

Convex approximations of functionals with curvature

Giovanni Bellettini, Maurizio Paolini, Claudio Verdi (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We address the numerical minimization of the functional F v = Ω D v + Ω μ v d H n - 1 - Ω x v d x , for v B V Ω ; - 1 , 1 . We note that F can be equivalently minimized on the larger, convex, set B V Ω ; - 1 , 1 and that, on that space, F may be regularized with a sequence { F ϵ ( v ) = Ω ϵ 2 + D v 2 + Ω μ v d H n - 1 - Ω x v d x } ϵ of regular functionals. Then both F and F ϵ can be discretized by continuous linear finite elements. The convexity of the functionals in B V Ω ; - 1 , 1 is useful for the numerical minimization of F . We prove the Γ - L 1 Ω -convergence of the discrete functionals to F and present a few numerical examples.

Convex Hull Property and Exclosure Theorems for H-Minimal Hypersurfaces in Carnot Groups

Francescopaolo Montefalcone (2016)

Analysis and Geometry in Metric Spaces

In this paper, we generalize to sub-Riemannian Carnot groups some classical results in the theory of minimal submanifolds. Our main results are for step 2 Carnot groups. In this case, we will prove the convex hull property and some “exclosure theorems” for H-minimal hypersurfaces of class C2 satisfying a Hörmander-type condition.

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. Francfort, Nam Q. Le, Sylvia Serfaty (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. Francfort, Nam Q. Le, Sylvia Serfaty (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Cross ratios, Anosov representations and the energy functional on Teichmüller space

François Labourie (2008)

Annales scientifiques de l'École Normale Supérieure

We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence...

Curvature functionals for curves in the equi-affine plane

Steven Verpoort (2011)

Czechoslovak Mathematical Journal

After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075.

Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane*

Yuri L. Sachkov (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories were defined, their local and global optimality were studied. In this paper the global structure of the exponential mapping is described. On this basis an explicit characterization of the cut locus and Maxwell set is obtained....

Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane*

Yuri L. Sachkov (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories were defined, their local and global optimality were studied. In this paper the global structure of the exponential mapping is described. On this basis an explicit characterization of the cut locus and Maxwell set is obtained....

Currently displaying 41 – 60 of 60

Previous Page 3