Displaying 81 – 100 of 381

Showing per page

Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold

Payel Karmakar (2022)

Mathematica Bohemica

The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, ξ -projectively flat, M -projectively flat, ξ - M -projectively flat, pseudo projectively flat and ξ -pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat,...

Déformations d’algèbres associées à une variété symplectique (les * ν -produits)

André Lichnerowicz (1982)

Annales de l'institut Fourier

Fondements de la théorie des * v -produits. Notion de * v -produit de Vey; tout * v -produit est équivalent à un * v -produit de Vey. Sur toute variété symplectique paracompacte ( W , F ) telle que b 3 ( W ) = 0 , il existe des * v -produits de Vey. Caractérisation des algèbres de Lie engendrées par antisymétrisation d’un * v -produit (éventuellement faible); ce sont à une équivalence près, les algèbres de Lie de Vey.On considère les variétés symplectiques ( W , F ) sur lesquelles opère, par symplectomorphismes, un groupe de Lie G . Si ( W , F ) admet...

Distinguished connections on ( J 2 = ± 1 ) -metric manifolds

Fernando Etayo, Rafael Santamaría (2016)

Archivum Mathematicum

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of ( J 2 = ± 1 ) -metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted...

Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach, Juan Monterde (2002)

Annales de l’institut Fourier

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...

Double linear connections

Alena Vanžurová (1991)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

E 1 -degeneration and d ' d ' ' -lemma

Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh (2016)

Commentationes Mathematicae Universitatis Carolinae

For a double complex ( A , d ' , d ' ' ) , we show that if it satisfies the d ' d ' ' -lemma and the spectral sequence { E r p , q } induced by A does not degenerate at E 0 , then it degenerates at E 1 . We apply this result to prove the degeneration at E 1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of d ' d ' ' -lemma.

Elliptic operators and higher signatures

Eric Leichtnam, Paolo Piazza (2004)

Annales de l’institut Fourier

Building on the theory of elliptic operators, we give a unified treatment of the following topics: - the problem of homotopy invariance of Novikov’s higher signatures on closed manifolds, - the problem of cut-and-paste invariance of Novikov’s higher signatures on closed manifolds, - the problem of defining higher signatures on manifolds with boundary and proving their homotopy invariance.

Currently displaying 81 – 100 of 381